Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids.

نویسندگان

  • Zhensheng Tao
  • Cong Chen
  • Tibor Szilvási
  • Mark Keller
  • Manos Mavrikakis
  • Henry Kapteyn
  • Margaret Murnane
چکیده

Attosecond spectroscopic techniques have made it possible to measure differences in transport times for photoelectrons from localized core levels and delocalized valence bands in solids. We report the application of attosecond pulse trains to directly and unambiguously measure the difference in lifetimes between photoelectrons born into free electron-like states and those excited into unoccupied excited states in the band structure of nickel (111). An enormous increase in lifetime of 212 ± 30 attoseconds occurs when the final state coincides with a short-lived excited state. Moreover, a strong dependence of this lifetime on emission angle is directly related to the final-state band dispersion as a function of electron transverse momentum. This finding underscores the importance of the material band structure in determining photoelectron lifetimes and corresponding electron escape depths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy.

Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tu...

متن کامل

Time-resolved photoemission on the attosecond scale: opportunities and challenges.

The interaction of laser pulses of sub-femtosecond duration with matter opened up the opportunity to explore electronic processes on their natural time scale. One central conceptual question posed by the observation of photoemission in real time is whether the ejection of the photoelectron wavepacket occurs instantaneously, or whether the response time to photoabsorption is finite leading to a ...

متن کامل

Spin Polarization and Attosecond Time Delay in Photoemission from Spin Degenerate States of Solids.

After photon absorption, electrons from a dispersive band of a solid require a finite time in the photoemission process before being photoemitted as free particles, in line with recent attosecond-resolved photoemission experiments. According to the Eisenbud-Wigner-Smith model, the time delay is due to a phase shift of different transitions that occur in the process. Such a phase shift is also a...

متن کامل

Theory of laser-assisted autoionization by attosecond light pulses

We present a quantum theory of the decay of an autoionizing state created in the attosecond xuv sextreme ultravioletd pump and laser probe measurements within the strong field approximation employing resonance parameters from Fano’s theory. From the electron spectra versus the pump-probe time delay, we show how the lifetimes of the resonances can be extracted directly from the time domain measu...

متن کامل

Time of flight-photoemission electron microscope for ultrahigh spatiotemporal probing of nanoplasmonic optical fields.

Nanoplasmonic excitations as generated by few-cycle laser pulses on metal nanostructures undergo ultrafast dynamics with timescales as short as a few hundred attoseconds (1 as = 10(-18) s). So far, the spatiotemporal dynamics of optical fields localized on the nanoscale (nanoplasmonic field) have been hidden from direct access in the real space and time domain. An approach which combines photoe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 353 6294  شماره 

صفحات  -

تاریخ انتشار 2016